Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38652186

RESUMO

The dynamic change of redox conditions is a key factor in emission of elemental mercury (Hg0) from riparian soils. The objective of this study was to elucidate the influences of redox conditions on Hg0 emission from riparian soils. Soil suspension experiments were conducted to measure Hg0 emission from five Hg-contaminated soil samples in two redox conditions (i.e., treated with air or with N2). In four of the five samples, Hg0 emission was higher in air treatment than on N2 treatment. Remaining one soil, which has higher organic matter than other soils, showed no distinct difference in Hg0 production between air and N2 treatment. In soil suspensions subject to N2 treatment, the dissolved organic carbon (DOC) and Fe2+ concentrations were 3.38- to 1.34-fold and 1.44- to 2.28-fold higher than those in air treatment, respectively. Positive correlations were also found between the DOC and Fe2+ (r = 0.911, p < 0.01) and Hg2+ (r = 0.815, p < 0.01) concentrations in soil solutions, suggesting Fe2+ formation led to the release of DOC, which bound to Hg2+ in the soil and, in turn, limited the availability of Hg2+ for reduction to Hg0 in N2 treatment. On the other hand, for remaining one soil, more Hg2+ might be adsorbed onto the DOM in the air treatment, resulted in the inhibition of Hg0 production in air treatment. These results imply that the organic matter is important to prevent Hg0 production by changing redox condition. Further study is needed to prove the role of organic matter in the production of Hg0.

2.
Microbes Environ ; 39(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538312

RESUMO

N2O-reducing bacteria have been examined and harnessed to develop technologies that reduce the emission of N2O, a greenhouse gas produced by biological nitrogen removal. Recent investigations using omics and physiological activity approaches have revealed the ecophysiologies of these bacteria during nitrogen removal. Nevertheless, their involvement in| |anammox processes remain unclear. Therefore, the present study investigated the identity, genetic potential, and activity| |of N2O reducers in an anammox reactor. We hypothesized that N2O is limiting for N2O-reducing bacteria| |and an| |exogeneous N2O supply enriches as-yet-uncultured N2O-reducing bacteria. We conducted a 1200-day incubation of N2O-reducing bacteria in an anammox consortium using gas-permeable membrane biofilm reactors (MBfRs), which efficiently supply N2O in a bubbleless form directly to a biofilm grown on a gas-permeable membrane. A 15N tracer test indicated that the supply of N2O resulted in an enriched biomass with a higher N2O sink potential. Quantitative PCR and 16S rRNA amplicon sequencing revealed Clade II nosZ type-carrying N2O-reducing bacteria as protagonists of N2O sinks. Shotgun metagenomics showed the genetic potentials of the predominant Clade II nosZ-carrying bacteria, Anaerolineae and Ignavibacteria in MBfRs. Gemmatimonadota and non-anammox Planctomycetota increased their abundance in MBfRs despite their overall lower abundance. The implication of N2O as an inhibitory compound scavenging vitamin B12, which is essential for the synthesis of methionine, suggested its limited suppressive effect on the growth of B12-dependent bacteria, including N2O reducers. We identified Dehalococcoidia and Clostridia as predominant N2O sinks in an anammox consortium fed exogenous N2O because of the higher metabolic potential of vitamin B12-dependent biosynthesis.


Assuntos
Oxidação Anaeróbia da Amônia , Óxido Nitroso , Óxido Nitroso/metabolismo , RNA Ribossômico 16S/genética , Bactérias , Biofilmes , Vitamina B 12/metabolismo , Desnitrificação
3.
Microbiol Resour Announc ; 13(3): e0127923, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38385666

RESUMO

Here, we report a genome sequence of Afipia carboxidovorans strain SH125 isolated from an anammox reactor. This facultative anaerobic strain possesses the clade I-type nitrous oxide (N2O) reductase gene, devoid of nitrite- and nitric oxide reductase genes. Deciphering the genome will help explore N2O reducers instrumental in N2O mitigation.

4.
Water Res ; 251: 121091, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244299

RESUMO

Ammonia retention and recovery from high-nitrogenous wastewater are new concepts being used for nitrogen management. A microaerophilic activated sludge system was developed to convert organic nitrogen into ammonia and retain it for its recovery; however, the settleability of activated sludge remains a challenge. Therefore, this study proposed an aerobic granular sludge system as a potential solution. Two types of sequencing batch reactors-airlift and upflow reactors-were operated to investigate the feasibility of fast granule formation, the performance of organic carbon removal and ammonia retention, and the dynamics of microbial community composition. The operation fed with industrial fermentation wastewater demonstrated that the airlift reactor ensured a more rapid granule formation than the upflow reactor because of the high shear force, and it maintained a superior ammonia retention stability of approximately 85 %. Throughout the operational period, changes in hydraulic retention time (HRT), settling time, and exchange ratio altered the granular particle sizes and microbial community compositions. Rhodocyclaceae were replaced with Comamonadaceae, Methylophilaceae, Xanthomonadaceae, and Chitinophagaceae as core taxa instrumental in granulation, likely because of their extracellular polymeric substance secretion. As the granulation process progressed, a significant decrease in the relative abundances of nitrifying bacteria-Nitrospiraceae and Nitrosomonadaceae-was observed. The reduction of settling time and HRT enhanced granulation and inhibited the activity of nitrifying bacteria. The success in granulation for ammonia conversion and retention in this study accelerates the paradigm shift from ammonia removal to ammonia recovery from industrial fermentation wastewater.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Amônia , Fermentação , Carbono , Matriz Extracelular de Substâncias Poliméricas/química , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Bactérias , Aerobiose , Nitrogênio/análise
5.
Sci Total Environ ; 918: 170291, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272073

RESUMO

Widespread use of membrane bioreactors for high-performance wastewater treatment depends on the prevention of biofouling during membrane filtration, which can reduce operating costs. Biofouling is usually prevented using mechanical and chemical membrane treatment methods, which can be time-consuming and expensive. In this study, we developed bio-capsules as a fluidizing carrier material in an integrated fixed-film activated sludge membrane bioreactor (IFAS-MBR). The bio-capsules were prepared from moniliform polyvinylidene chloride fibrous balls enclosed in a spherical plastic basket, and could harbor protozoa and metazoa. A pilot-scale anoxic-oxic IFAS-MBR system with a total volume of 132 m3 was operated to remove organic carbon and nitrogen from municipal wastewater at a high permeate flux (0.84 m3/m2/day). The efficacy of the bio-capsules and the prokaryotic/eukaryotic community structures in the system were investigated. After operation for 1 year, the system demonstrated stable removal of organic carbon (76.0 % ± 15.5 % as total organic carbon, 93.1 ± 5.3 % as BOD, and 88.5 ± 5.2 % as CODMn) and nitrogen (71.3 % ± 9.3 %) despite fluctuations in the influent concentrations. Increases in transmembrane pressure (TMP) were retarded from its increase rates from 0.56 kPa/day to 0.149-0.224 kPa/day by the bio-capsules, and the TMP was kept constant at around 20 kPa throughout the operational period. High-throughput sequencing of 16S rRNA gene amplicons showed that the prokaryotic family Pirellulaceae was metabolically active and correlated with the TMP. According to the 18S rRNA gene sequencing, the eukaryotic metazoan Bdelloidea was more abundant in the bio-capsules than in activated sludge, which was supported by microscopic observations. These results suggest that the application of bio-capsules prevents increases in the TMP by harboring the procaryotes and eukaryotes responsible for biofouling mitigation in the IFAS-MBR system.


Assuntos
Incrustação Biológica , Microbiota , Animais , Esgotos , Biofilmes , RNA Ribossômico 16S , Membranas Artificiais , Reatores Biológicos , Nitrogênio , Carbono
6.
Allergol Int ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065704

RESUMO

BACKGROUND: Maintaining good asthma control minimizes the risk of exacerbations and lung function decline and is a primary goal of asthma management. The Japanese Pediatric Asthma Guidelines (JPGL) employs different classification criteria for control status from other guidelines, stressing a higher level of control. Based on JPGL, we previously developed a caregiver-completed questionnaire for assessing and achieving best asthma control in preschoolers. In this study, we aimed to develop a questionnaire for school-age children and adolescents. METHODS: A working questionnaire comprising 14 items for patients and 34 items for caregivers was administered to 362 asthma patients aged 6-15 years and their caregivers. Separately, physicians filled out a questionnaire to determine JPGL-defined control. Logistic regression analysis was performed to construct a model to predict control levels using data from a randomly selected set of completed questionnaires from two-thirds of the subjects. Validation was performed using the remaining questionnaires. RESULTS: A set of 7 questions, encompassing self-assessed control status at the time of the visit and in the past month, and nocturnal/early morning asthma symptoms for patients and frequency of asthma symptoms, dyspnea, rescue beta-agonist use, and asthma hospitalization for caregivers, were selected and the 7-item model showed a good statistical fit with AIC of 110.5. The model has been named the Best Asthma Control Test for School Children and Adolescents (Best ACT-S). Best ACT-S scores differed significantly in the hypothetical direction among the groups of different JPGL-defined control levels, step-up/down treatment decisions, and presence/non-presence of exacerbations in the previous year. CONCLUSIONS: The Best ACT-S is a valid questionnaire for children/adolescents aiming for best asthma control.

7.
Arerugi ; 72(9): 1138-1146, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37967960

RESUMO

BACKGROUND: Little is known whether sublingual immunotherapy using Japanese cedar pollen extract (cedar SLIT) is effective for not only Japanese cedar pollinosis but also Japanese cypress pollinosis. We investigated the prevalence rate of Japanese cypress pollinosis, efficacy of cedar SLIT on cypress pollinosis and patients' wish to receive cypress SLIT. METHODS: We investigated a multi-center (31 institutions), cross-sectional survey using a self-administrated questionnaire with four questions for patients received cedar SLIT aged from 5 to 69 years old. RESULTS: 2523 subjects were enrolled for analysis. 83.4% of them had pollinosis symptoms during cypress season before cedar SLIT. In such patients, 37.4% experienced lessened efficacy of cedar SLIT during cypress season. Both the prevalence of cypress pollinosis and the lessened efficacy of cedar SLIT on cypress pollinosis were significantly seen in western Japan as compared to eastern Japan. 76.1% of the subject having cypress pollinosis before SLIT wished to receive cypress SLIT if it is available. CONCLUSION: A lessened efficacy of cedar SLIT during cypress season was broadly seen in Japan, and further showed a regional difference. Together with the finding of high wish by patients, these results suggest a development of cypress SLIT is desirable.


Assuntos
Cryptomeria , Cupressus , Rinite Alérgica Sazonal , Imunoterapia Sublingual , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Rinite Alérgica Sazonal/terapia , Rinite Alérgica Sazonal/tratamento farmacológico , Pólen , Estudos Transversais , Prevalência , Inquéritos e Questionários , Alérgenos
8.
Water Res ; 247: 120780, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950949

RESUMO

Considering the reciprocating processes of nitrogen gas (N2) fixation to ammonia (NH4-N) and NH4-N removal to N2 through nitrification and denitrification during wastewater treatment, a microaerobic activated sludge process (MAS) is proposed in this study as a pretreatment to retain NH4-N from high-strength nitrogenous wastewater for further NH4-N recovery through membrane technology, that is, inhibit nitrification, with sufficient removal of total organic carbon (TOC). With DO and pH control, the 3-reactor bench-scale MAS systems successfully realized an NH4-N retention rate of over 80 %, with TOC removal rates of over 90 %. In addition, the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) during MAS were evaluated. The total N2O emissions were 407 and 475 mg-N/day when pH was controlled at 6.2 (S1) and 6.8 (S2), respectively, with average emission factors to total nitrogen load over 2 % in both systems. Also, the global warming potential of N2O is one order of magnitude larger than that of CO2, indicating the significance of N2O in the MAS process. Therefore, the mechanisms of N2O emission from each reactor were investigated. The first reactor, where most of the TOC was adsorbed, emitted only 1.98 % (S1) and 2.43 % (S2) of the total N2O emissions through the denitrification of nitrite and nitrate (NOx) from the return sludge. The second reactor emitted 79.9 % (S1) and 69.0 % (S2) of the total N2O with the emission rates the same order of magnitude as the NOx production rates. Multiple pathways were considered to contribute to the high N2O emissions, and biotic NH2OH oxidation was one potential pathway at pH 6.2. Finally, the third reactor emitted 9.98 % (S1) and 16.8 % (S2) of the total N2O by nitrifier denitrification. Overall, this study showed that the large N2O emissions under nitrification-inhibiting conditions of the MAS process owed to the incomplete nitrification under acidic conditions and large abundances of denitrifiers. On the other hand, the lower N2O emissions at pH 6.2 evidenced the potential N2O mitigation under slightly more acidic conditions, underlining the necessity of further study on N2O mitigation when adapting to the trend of NH4-N recovery.


Assuntos
Esgotos , Águas Residuárias , Amônia , Óxido Nitroso/metabolismo , Dióxido de Carbono , Desnitrificação , Reatores Biológicos , Nitrificação , Nitrogênio
9.
Environ Sci Technol ; 57(37): 13874-13886, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37676844

RESUMO

A transition to ammonia recovery from wastewater has started; however, a technology for sustainable nitrogen retention in the form of ammonia and organic carbon removal is still in development. This study validated a microaerophilic activated sludge (MAS) system to efficiently retain ammonia from high-strength nitrogenous wastewater. The MAS is based on conventional activated sludge (CAS) with aerobic and settling compartments. Low dissolved oxygen (DO) concentrations (<0.2 mg/L) and short solids retention times (SRTs) (<5 days) eliminated nitrifying bacteria. The two parallel MASs were successfully operated for 300 days and had ammonia retention of 101.7 ± 24.9% and organic carbon removal of 85.5 ± 8.9%. The MASs mitigated N2O emissions with an emission factor of <0.23%, much lower than the default value of CAS (1.6%). A short-term step-change test demonstrated that N2O indicated the initiation of nitrification and the completion of denitrification in the MAS. The parallel MASs had comparable microbial diversity, promoting organic carbon oxidation while inhibiting ammonia-oxidizing microorganisms (AOMs), as revealed by 16S rRNA gene amplicon sequencing, the quantitative polymerase chain reaction of functional genes, and fluorescence in situ hybridization of ß-proteobacteria AOB. The microbial analyses also uncovered that filamentous bacteria were positively correlated with effluent turbidity. Together, controlling DO and SRT achieved organic carbon removal and successful ammonia retention, mainly by suppressing AOM activity. This process represents a new nitrogen management paradigm.


Assuntos
Microbiota , Esgotos , Águas Residuárias , Amônia , Hibridização in Situ Fluorescente , RNA Ribossômico 16S , Carbono , Nitrogênio
10.
Microbiol Resour Announc ; 12(10): e0041423, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37732797

RESUMO

A complete genome sequence of Marinobacter shengliensis D49 in the class Gamma-proteobacteria was isolated from activated sludge treating landfill leachate. The genome encodes the functional genes for the biosynthesis of ectoine (ectABC), a compatible solute for cosmetics. Deciphering the genome helps pave the way for ectoine production by the isolate.

11.
Sci Total Environ ; 901: 165908, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37543327

RESUMO

Iron sulfides-based autotrophic denitrification (IAD) is effective for treating nitrate-contaminated wastewater. However, the complex nitrate transformation pathways coupled with sulfur and iron cycles in IADs are still unclear. In this study, two columns (abiotic vs biotic) with iron sulfides (FeS) as the packing materials were constructed and operated continuously. In the abiotic column, FeS chemically reduced nitrate to ammonium under the ambient condition; this chemical reduction reaction pathway was spontaneous and has been overlooked in IAD reactors. In the biotic column (IAD biofilter), the complex nitrogen-transformation network was composed of chemical reduction, autotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and sulfate reducing ammonium oxidation (Sulfammox). Metagenomic analysis and XPS characterization of the IAD biofilter further validated the roles of functional microbial communities (e.g., Acidovorax, Diaphorobacter, Desulfuromonas) in nitrate reduction process coupled with iron and sulfur cycles. This study gives an in-depth insight into the nitrogen transformations in IAD system and provides fundamental evidence about the underlying microbial mechanism for its further application in biological nitrogen removal.

12.
Sci Total Environ ; 889: 164339, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216990

RESUMO

Lakes are hot spots for methane (CH4) emissions and particulate organic carbon (POC) production, which describes the methane paradox phenomenon. However, the current understanding of the source of POC and its effect on CH4 emissions during eutrophication remains unclear. In this study, 18 shallow lakes in different trophic states were selected to investigate the POC source and its contribution to CH4 production, particularly to reveal the underlying mechanisms of the methane paradox. The carbon isotopic analysis showed that the δ13Cpoc ranged from -30.28 ‰ to -21.14 ‰, indicating that cyanobacteria-derived carbon is an important source of POC. The overlying water was aerobic but contained high concentrations of dissolved CH4. Particularly, in hyper-eutrophic lakes, such as Lakes Taihu, Chaohu, and Dianshan, the dissolved CH4 concentrations were 2.11, 1.01, and 2.44 µmol/L, while the dissolved oxygen concentrations were 3.11, 2.92, and 3.17 mg/L, respectively. The intensified eutrophication increased the POC concentration, concomitantly promoting the dissolved CH4 concentration and the CH4 flux. These correlations revealed the role of POC in CH4 production and emission fluxes, particularly as a possible cause of the methane paradox, which is crucial for accurately evaluating the carbon budget and balance in shallow freshwater lakes.


Assuntos
Carbono , Lagos , Metano/análise , Água/análise , Isótopos de Carbono/análise , Poeira/análise
13.
Environ Res ; 219: 115175, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584848

RESUMO

Lacustrine eutrophication is generally considered as an important contributor of carbon emissions to the atmosphere; however, there is still a huge challenge in accuracy estimating carbon emissions from lakes. To test the effect of widely used space-for-time substitution on lake carbon emissions, this study monitored different processes of carbon emissions, including the carbon production potential, dissolved carbon concentrations, and carbon release fluxes in eight lakes along the trophic gradients on a spatial scale and the typical eutrophic Lake Taihu for one year on a temporal scale. Eutrophication promoted carbon production potential, dissolved carbon concentrations, and carbon release fluxes, especially for CH4. Trophic lake index (TLI) showed positive correlations with the CH4 production potential, dissolved CH4 concentrations, and CH4 release fluxes, and also positive correlations with the CO2 production potential, dissolved CO2 concentrations, and CO2 release fluxes. The space-for-time substitution led to an overestimation for the influence of eutrophication on carbon emissions, especially the further intensification of lake eutrophication. On the spatial scale, the average CH4 production potential, dissolved CH4 concentrations and CH4 release fluxes in eutrophic lakes were 268.6, 0.96 µmol/L, and 587.6 µmol m-2·h-1, respectively, while they were 215.8, 0.79 µmol/L, and 548.6 µmol m-2·h-1 on the temporal scale. Obviously, CH4 and CO2 emissions on the spatial scale were significantly higher than those on the temporal scale in eutrophic lakes. The primary influencing factors were the seasonal changes in the physicochemical environments of lake water, including dissolved oxygen (DO) and temperature. The CH4 and CO2 release fluxes showed negative correlations with DO, while temperature displayed positive correlations, respectively. These results suggest that the effects of DO and temperature on lake carbon emissions should be considered, which may be ignored during the accurate assessment of lake carbon budget via space-for-time substitution in eutrophic lakes.


Assuntos
Carbono , Lagos , Dióxido de Carbono/análise , Metano/análise , Temperatura , China
14.
Sci Rep ; 12(1): 17967, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411294

RESUMO

We repeatedly measured isotopic compositions of noble gases and CO2 in volcanic gases sampled at six fumaroles around the Kusatsu-Shirane volcano (Japan) between 2014 and 2021 to detect variations reflecting recent volcanic activity. The synchronous increases in 3He/4He at some fumaroles suggest an increase in magmatic gas supply since 2018. The increase in magmatic gas supply is also supported by the temporal variations in 3He/CO2 ratios and carbon isotopic ratios of CO2. The 3He/40Ar* ratios (40Ar*: magmatic 40Ar) show significant increases in the period of high 3He/4He ratios. The temporal variation in 3He/40Ar* ratios may reflect changes in magma vesicularity. Therefore, the 3He/40Ar* ratio of fumarolic gases is a useful parameter to monitor the current state of degassing magma, which is essential for understanding the deep process of volcanic unrest and may contribute to identifying precursors of a future eruption. These results provide additional validation for the use of noble gas and carbon isotopic compositions of fumarolic gases for monitoring magmatic-hydrothermal systems.

15.
Environ Sci Technol ; 56(16): 11694-11706, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35917165

RESUMO

In denitrifying reactors, canonical complete denitrifying bacteria reduce nitrate (NO3-) to nitrogen via N2O. However, they can also produce N2O under certain conditions. We used a 15N tracer method, in which 15N-labeled NO3-/nitrite (NO2-) and nonlabeled N2O were simultaneously supplied with organic electron donors to five canonical complete denitrifying bacteria affiliated with either Clade I or Clade II nosZ. We calculated their NO3-, NO2-, and N2O consumption rates. The Clade II nosZ bacterium Azospira sp. strain I13 had the highest N2O consumption rate (3.47 ± 0.07 fmol/cell/h) and the second lowest NO3- consumption rate (0.20 ± 0.03 fmol/cell/h); hence, it is a N2O sink. A change from peptone- to acetate/citrate-based organic electron donors increased the NO3- consumption rate by 4.8 fold but barely affected the N2O consumption rate. Electron flow was directed to N2O rather than NO3- in Azospira sp. strain I13 and Az. oryzae strain PS only exerting a N2O sink but to NO3- in the Clade I nosZ N2O-reducing bacteria Pseudomonas stutzeri strain JCM 5965 and Alicycliphilus denitrificans strain I51. Transcriptome analyses revealed that the genotype could not fully describe the phenotype. The results show that N2O production and consumption differ among canonical denitrifying bacteria and will be useful for developing N2O mitigation strategies.


Assuntos
Dióxido de Nitrogênio , Óxido Nitroso , Bactérias , Desnitrificação , Perfilação da Expressão Gênica , Nitritos
16.
ISME J ; 16(9): 2087-2098, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676322

RESUMO

Microorganisms possessing N2O reductases (NosZ) are the only known environmental sink of N2O. While oxygen inhibition of NosZ activity is widely known, environments where N2O reduction occurs are often not devoid of O2. However, little is known regarding N2O reduction in microoxic systems. Here, 1.6-L chemostat cultures inoculated with activated sludge samples were sustained for ca. 100 days with low concentration (<2 ppmv) and feed rate (<1.44 µmoles h-1) of N2O, and the resulting microbial consortia were analyzed via quantitative PCR (qPCR) and metagenomic/metatranscriptomic analyses. Unintended but quantified intrusion of O2 sustained dissolved oxygen concentration above 4 µM; however, complete N2O reduction of influent N2O persisted throughout incubation. Metagenomic investigations indicated that the microbiomes were dominated by an uncultured taxon affiliated to Burkholderiales, and, along with the qPCR results, suggested coexistence of clade I and II N2O reducers. Contrastingly, metatranscriptomic nosZ pools were dominated by the Dechloromonas-like nosZ subclade, suggesting the importance of the microorganisms possessing this nosZ subclade in reduction of trace N2O. Further, co-expression of nosZ and ccoNO/cydAB genes found in the metagenome-assembled genomes representing these putative N2O-reducers implies a survival strategy to maximize utilization of scarcely available electron acceptors in microoxic environmental niches.


Assuntos
Burkholderiales , Óxido Nitroso , Burkholderiales/genética , Desnitrificação , Metagenoma , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio
17.
Microbes Environ ; 37(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418546

RESUMO

Agricultural soil is the primary N2O sink limiting the emission of N2O gas into the atmosphere. Although Gemmatimonadetes bacteria are abundant in agricultural soils, limited information is currently available on N2O reduction by Gemmatimonadetes bacteria. Therefore, the effects of pH and temperature on N2O reduction activities and affinity constants for N2O reduction were examined by performing batch experiments using an isolate of Gemmatimonadetes bacteria, Gemmatimonas aurantiaca (NBRC100505T). G. aurantiaca reduced N2O at pH 5-9 and 4-50°C, with the highest activity being observed at pH 7 and 30°C. The affinity constant of G. aurantiaca cells for N2O was 4.4| |µM. The abundance and diversity of the Gemmatimonadetes 16S rRNA gene and nosZ encoding nitrous oxide reductase in agricultural soil samples were also investigated by quantitative PCR (qPCR) and amplicon sequencing ana-lyses. Four N2O-reducing agricultural soil samples were assessed, and the copy numbers of the Gemmatimonadetes 16S rRNA gene (clades G1 and G3), nosZ DNA, and nosZ mRNA were 8.62-9.65×108, 5.35-7.15×108, and 2.23-4.31×109 copies (g dry soil)-1, respectively. The abundance of the nosZ mRNA of Gemmatimonadetes bacteria and OTU91, OUT332, and OTU122 correlated with the N2O reduction rates of the soil samples tested, suggesting N2O reduction by Gemmatimonadetes bacteria. Gemmatimonadetes 16S rRNA gene reads affiliated with OTU4572 and OTU3759 were predominant among the soil samples examined, and these Gemmatimonadetes OTUs have been identified in various types of soil samples.


Assuntos
Óxido Nitroso , Solo , Bactérias/genética , Desnitrificação , RNA Mensageiro , RNA Ribossômico 16S/genética , Microbiologia do Solo
18.
Water Res ; 216: 118276, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339050

RESUMO

Urban rivers receive used water derived from anthropogenic activities and are a crucial source of the potent greenhouse gas nitrous oxide (N2O). However, considerable uncertainties still exist regarding the variation and mechanisms of N2O production in response to the discharge of treated sewage from municipal wastewater treatment plants (WWTPs). This study investigated N2O concentrations and microbial processes responsible for nitrogen conversion upstream and downstream of WWTPs along the Tama River flowing through Tokyo, Japan. We evaluated the effect of treated sewage on dissolved N2O concentrations and inherent N2O consumption activities in the river sediments. In summer and winter, the mean dissolved N2O concentrations were 0.67 µg-N L-1 and 0.82 µg-N L-1, respectively. Although the dissolved N2O was supersaturated (mean 288.7% in summer, mean 240.7% in winter) in the river, the N2O emission factors (EF5r, 0.013%-0.025%) were significantly lower than those in other urban rivers and the Intergovernmental Panel on Climate Change default value (0.25%). The nitrate (NO3-) concentration in the Tama River increased downstream of the WWTPs discharge sites, and it was the main nitrogen constituent. An increasing trend of NO3- concentration was observed from upstream to downstream, along with an increase in the N2O consumption potential of the river sediment. A multiple regression model showed that NO3- is the crucial factor influencing N2O saturation. The diversity in the upstream microbial communities was greater than that in the downstream ones, indicating the involvement of treated sewage discharge in shaping the microbial communities. Functional gene quantification for N2O production and consumption suggested that nirK-type denitrifiers likely contributed to N2O production. Structural equation models (SEMs) revealed that treated sewage discharged from WWTPs increased the NO3- loading from upstream to downstream in the river, inducing changes in the microbial communities and enhancing the N2O consumption activities. Collectively, aerobic conditions limited denitrification and in turn facilitated nitrification, leading to low N2O emissions even despite high NO3- loadings in the Tama River. Our findings unravel an overestimation of the N2O emission potential in an urban oxygen-rich river affected by treated sewage discharge.


Assuntos
Microbiota , Esgotos , Desnitrificação , Nitrificação , Nitrogênio/análise , Óxido Nitroso/análise , Rios/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-36612564

RESUMO

The first global-scale assessment of Sb contamination in soil that was related to mining/smelting activities was conducted based on 91 articles that were published between 1989 and 2021. The geographical variation, the pollution level, the speciation, the influencing factors, and the environmental effects of Sb that were associated with mining/smelting-affected soils were analyzed. The high Sb values mainly occurred in developed (Poland, Italy, Spain, Portugal, New Zealand, Australia) and developing (China, Algeria, Slovakia) countries. Sb concentrations of polluted soil from mining areas that were reported in most countries significantly exceeded the maximum permissible limit that is recommended by WHO, except in Turkey and Macedonia. The soil Sb concentrations decreased in the order of Oceania (29,151 mg/kg) > North Africa (13,022 mg/kg) > Asia (1527 mg/kg) > Europe (858 mg/kg) > South America (37.4 mg/kg). The existing extraction methods for Sb speciation have been classified according to the extractant, however, further research is needed in the standardization of these extraction methods. Modern analytical and characterization technologies, e.g., X-ray absorption spectroscopy, are effective at characterizing chemical speciation. Conditional inference tree (CIT) analysis has shown that the clay content was the major factor that influenced the soil Sb concentration. Non-carcinogenic risks to the public from soil Sb pollution were within the acceptable levels in most regions. An Sb smelter site at the Endeavour Inlet in New Zealand, an abandoned open-pit Sb mine in Djebel Hamimat, Algeria, an old Sb-mining area in Tuscany, Italy, and Hillgrove mine in Australia were selected as the priority control areas. Cynodon dactylon, Boehmeria, Pteris vittata, and Amaranthus paniculatus were found to be potential Sb accumulators. All of the values of bioaccumulation factors for the crops were less than one. However, ingestion of Sb through crop consumption posed potential non-carcinogenic health risks, which should not be neglected. The soil variables (pH, Eh, total sulfur, carbon nitrogen ratio, total organic carbon, and sulfate), the total Sb and the bioavailable Sb, and heavy metal(loid)s (As, Pb, and Fe) were the major parameters affecting the microbial community compositions.


Assuntos
Metais Pesados , Poluentes do Solo , Antimônio/análise , Solo/química , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , China , Medição de Risco
20.
Water Res ; 209: 117910, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34920314

RESUMO

Harnessing nitrous oxide (N2O)-reducing bacteria is a promising strategy to reduce the N2O footprint of engineered systems. Applying a preferred organic carbon source as an electron donor accelerates N2O consumption by these bacteria. However, their N2O consumption potential and activity when fed different organic carbon species remain unclear. Here, we systematically compared the effects of various organic carbon sources on the activity of N2O-reducing bacteria via investigation of their biokinetic properties and genomic potentials. Five organic carbon sources-acetate, succinate, glycerol, ethanol, and methanol-were fed to four N2O-reducing bacteria harboring either clade I or clade II nosZ gene. Respirometric analyses were performed with four N2O-reducing bacterial strains, identifying distinct shifts in DO- and N2O-consumption biokinetics in response to the different feeding schemes. Regardless of the N2O-reducing bacteria, higher N2O consumption rates, accompanied by higher biomass yields, were obtained with acetate and succinate. The biomass yield (15.45 ± 1.07 mg-biomass mmol-N2O-1) of Azospira sp. strain I13 (clade II nosZ) observed under acetate-fed condition was significantly higher than those of Paracoccus denitrificans and Pseudomonas stutzeri, exhibiting greater metabolic efficiency. However, the spectrum of the organic carbon species utilizable to Azospira sp. strain I13 was limited, as demonstrated by the highly variable N2O consumption rates observed with different substrates. The potential to metabolize the supplemented carbon sources was investigated by genomic analysis, the results of which corroborated the N2O consumption biokinetics results. Moreover, electron donor selection had a substantial impact on how N2O consumption activities were recovered after oxygen exposure. Collectively, our findings highlight the importance of choosing appropriate electron donor additives for increasing the N2O sink capability of biological nitrogen removal systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...